Φ-modules and Coefficient Spaces
نویسنده
چکیده
We define and study certain moduli stacks of modules equipped with a Frobenius semi-linear endomorphism. These stacks can be thought of as parametrizing the coefficients of a variable Galois representation and are global variants of the spaces of Kisin–Breuil Φ-modules used by Kisin in his study of deformation spaces of local Galois representations. A version of a rigid analytic period map is defined for these spaces, and it is shown how their local structure can be described in terms of “local models”. We also show how Bruhat–Tits buildings can be used to study their special fibers. 2000 Math. Subj. Class. Primary: 14G22, 11S20; Secondary: 14M15.
منابع مشابه
On arithmetic families of filtered phi-modules and crystalline representations
We consider stacks of filtered φ-modules over rigid analytic spaces and adic spaces. We show that these modules parametrize p-adic Galois representations of the absolute Galois group of a p-adic field with varying coefficients over an open substack containing all classical points. Further we study a period morphism (defined by Pappas and Rapoport) from a stack parametrising integral data and de...
متن کاملϕ-ALMOST DEDEKIND RINGS AND $\Phi$-ALMOST DEDEKIND MODULES
The purpose of this paper is to introduce some new classes of rings and modules that are closely related to the classes of almost Dedekind domains and almost Dedekind modules. We introduce the concepts of $\phi$-almost Dedekind rings and $\Phi$-almost Dedekind modules and study some properties of this classes. In this paper we get some equivalent conditions for $\phi$-almost Dedekind rings and ...
متن کاملCOUPLED FIXED POINT THEOREMS FOR GENERALIZED Φ-MAPPINGS SATISFYING CONTRACTIVE CONDITION OF INTEGRAL TYPE ON CONE METRIC SPACES
In this paper, we unify, extend and generalize some results on coupled fixed point theorems of generalized φ- mappings with some applications to fixed points of integral type mappings in cone metric spaces.
متن کاملBest Proximity Points Results for Cone Generalized Semi-Cyclic φ-Contraction Maps
In this paper, we introduce a cone generalized semi-cyclicφ−contraction maps and prove best proximity points theorems for such mapsin cone metric spaces. Also, we study existence and convergence results ofbest proximity points of such maps in normal cone metric spaces. Our resultsgeneralize some results on the topic.
متن کاملThe study on controlled g-frames and controlled fusion frames in Hilbert C*-modules
Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces. Fusion frames and g-frames generalize frames. Hilbert C*-modules form a wide category between Hilbert spaces and Banach spaces. Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C*...
متن کامل